
XSHARP : XBASE AND .NET

TO THE MAX

Southwest Fox 2019 – Phoenix AZ
Fabrice Foray

fabrice@xsharp.eu

Overview

➢ FoxPro Dialect

➢ Class Definition

➢ DBF Console App

➢ .NET Extensions to xBase

➢ Type Check Expression, Var/Local Implied, Dynamic

➢ Const, Default, Nullable Type access, Yield

➢ Checked/UnChecked/Using/Scope

➢ Lock/Fixed/UnSafe

➢ Switch Statements

➢ Try/Catch/Finally

➢ Anonymous & Lambda Expression

➢ Extensions

➢ Extension Methods

➢ Generics

➢ LINQ

➢ Async / Await

FoxPro Dialect

FoxPro Dialect

 Class Definition Sample

 DEFINE CLASS / ENDDEFINE

 USE / SCAN / APPEND

 Standard FoxPro Commands

Memory and Vars

Memory and Vars

 Type Check

 IS / ASTYPE

 VAR / LOCAL IMPLIED

 Compile-Time resolution

 DYNAMIC

 A little bit like USUALs…

Memory and Vars

 DEFAULT

 oPerson:FirstName DEFAULT "First"
◼ Set a default value if the left element is NULL

 ?

oEmptyPerson?:FirstName
◼ Conditional Access, no crash even if oEmptyPerson is NULL

 CONST / INITONLY
◼ Change the way Fields can be set and modified

◼ Let’s see a Sample

Yield

 Yield

 Any enumerator

 ForEach or LINQ

 Let’s see a Sample

Statement Blocks

BEGIN

 BEGIN CHECKED

 The checked keyword is used to explicitly enable

overflow checking for integral-type arithmetic

operations and conversions.

 BEGIN UNCHECKED

 The unchecked keyword can be used to prevent

overflow checking.

BEGIN

 BEGIN USING

 Provides a convenient syntax that ensures the correct

use of IDisposable objects.

 The using statement calls the Dispose method, and it

also causes the object itself to go out of scope as soon

as Dispose is called. Within the using block, the object is

read-only and cannot be modified or reassigned.

BEGIN

 BEGIN SCOPE

 Define a block statement

 All defined LOCALs in that block, only exist in that

block

 Let’s see a Sample

BEGIN

 BEGIN FIXED

 statement prevents the garbage collector from

relocating a movable variable

 sets a pointer to a managed variable and "pins" that

variable during the execution of the statement.

BEGIN

 BEGIN LOCK

 Marks a statement block as a critical section

 Ensures that another thread does not enter that block.

◼ If so, it will wait, until the object is released at END

 More to come with Async

SWITCH

 SWITCH … CASE

 DO CASE replacement

◼ Except that the expression is only evaluated once

 More like Switch/Case in C#, C++

◼ No fall-through

◼ So no Break needed

 Ok, let’s see

Try Catch

 Try Catch Finally

 Open a statement block, which specify handlers for

different exceptions.

 And, optionally, an exit statement block whatever the

reason of the exit

 Let’s see a Sample

Anonymous & Lambda

Anonymous Methods

 Delegate … reminder

 It is a Reference type, like a Method signature

DELEGATE DoubleDelegate(d AS REAL8) AS REAL8

 Now, DoubleDelegate is a Type

◼ LOCAL namedMethod AS DoubleDelegate

 If MultiplyBy2 is a Function with the right prototype

◼ namedMethod := MultiplyBy2

 And you can use the DELEGATE for a Function call

◼ namedMethod(8.0)

Lambda Expression

 So, and Anonymously ?

 Define the DELEGATE

 Define the reference holder

 Write that code, a bit like a CodeBlock

 Very usefull with in List<T> for example

Extensions

Extension Methods

 Enable you to "add" methods to existing types

without creating a new derived type.

 Static Class

 Add Static Method

 The first parameter specifies which type the method

operates on, and the parameter is preceded by the

SELF modifier.

Generics

 Generics

 Usage

◼ List<String>

 Definition

◼ MyArray<T>

 Constraints

◼ Struct Only Value Type

◼ Class Only Reference Type

◼ New() parameter-less constructor

 Let’s go for a Demo !

LINQ

 LINQ

 Language-Integrated Query
◼ Definition

 The full LINQ feature set will be supported by X#:
◼ FROM

◼ LET

◼ WHERE

◼ JOIN

◼ ORDER BY

◼ EQUALS

◼ INTO

 A sample is better than a long talk….

Async / Await

Async

 Async

 Potentially blocking operation ?

◼ Web Access (HttpClient, …)

◼ File Access (StreamWriter, XMLReader, …)

◼ Media manipulation (BitmapEncoder, MediaCapture, …)

 How to ?

◼ Threads !

◼ BackgroundWorkers

Async

 Async

 How to ?

◼ ASYNC keyword in the method signature

◼ By convention, ends with an "Async" suffix.

◼ The return type is a Task, or Void

 Await

 The ASYNC method can't continue past that point until
the process is complete.

 Control returns immediately to the caller of the async
method.

THANKS FOR YOUR

ATTENTION…☺

Southwest Fox 2019 – Phoenix AZ
Fabrice Foray

fabrice@xsharp.eu

