
Look at X Sharp!

Eric Selje
Salty Dog Solutions, LLC

Madison, WI USA
Voice: 608-213-9567

Website: www.SaltyDogLLC.com
Email: Eric@SaltyDogLLC.com

Would you be interested in a product that compiles your existing Visual FoxPro projects into
.NET code? Well, that product doesn't exist, but there is a compelling product called X# that is
working towards that goal. They've got a mature product that compiles many dialects of xBase to
.NET already, and they're now actively working on VFP syntax.

In this session we'll look at X# from this Visual FoxPro developer’s point of view.

Look at X Sharp!

Copyright 2019, Eric Selje Page 2 of 32

You will learn:

• A brief history of the xBase language family tree
• How close a real FoxPro to .NET compiler is
• Whether this is a product you can move forward with, given your current skill set
• Whether this is even a direction you want to go

Preface
This whitepaper cannot be a complete documentation about all things X#. My intended
audience is the Visual FoxPro developer who’s looking at options for either new
development or a candidate for migrating their existing projects. I hope after you read this
whitepaper as well as my own conclusions you’ll be more informed about what X# is and
what it is not and will be able to make a decision about whether this is a direction you want
to pursue.

Look at X Sharp!

Copyright 2019, Eric Selje Page 3 of 32

A Brief History of xBase
In the beginning, there was Vulcan.

Created in 1978 by Wayne Ratliff at JPL Laboratories to run his football pool, Vulcan was
the ur-language of what would become the bread and butter of every developer who used
any of its descendants. For Vulcan begat dBase, which begat FoxBase, which begat FoxPro,
which begat Visual FoxPro, which is why we all gather here at Southwest Fox today.

It’s important to understand a little of this history if we want to understand X#, because X#
descends from a different branch of the family tree than Visual FoxPro does. When you see
terms like Vulcan (not the same Vulcan as above) or VO mentioned in the docs but have no
sense of xBase history, it’s difficult to orient yourself. So let’s take a brief look at the history
of xBase.

Interpreters
The original Vulcan by Wane Ratliff was licensed to Ashton-Tate, who named their
derivative dBase II.i Vulcan ran on CP/M, but Ashton-Tate also got versions running on
Apple II and DOS. dBase III added support for VMS and Unix as well, and with the addition
of ASSIST in dBase III+, the product had really gained traction. This is actually where I
became aware of the product, and probably many of you as well.

It wasn’t long until competitors began cloning dBase. We all owe a great debt of gratitude
to Fox Software for creating a dBase III+ clone called FoxBase+. I can still remember taking
my existing dBase PRGs and running them under FoxBase for the first time and being
absolutely amazed by the speed difference. It was as if someone brought up the anchor and
just let the program run!

Meanwhile Ashton-Tate came out with dBase IV, which we all know was an absolute dog,
and FoxBase thrived. A desperate Ashton-Tate sued Fox Software for cloning the dBase
language, which they eventually lost because they didn’t actually own it in the first place.
Remember I said that Wayne Ratliff merely licensed Vulcan to them? The court decided
that Ashton-Tate had no case because dBase itself was derived from the work that became
Vulcan, and not Vulcan itself. It’s a little confusing and made even more so when you add in
the fact that by the time the lawsuit was concluded, dBase had been sold to Borland who
was also being sued by Lotus for cloning the look and feel of Lotus 1-2-3. So at that time
Borland was trying to argue both sides of very similar suits!

Borland (renamed Inprise) eventually sold dBase to KSoft, a company run by a man who
made a ton of money selling his dBase apps and didn’t want to see the product die (similar
to VFP Advanced, but that’s a different session). KSoft was renamed Databased
Intelligence, then simply dBase LLC. You may be surprised to learn that dBase is still
around, and dBase LLC just released dBase 2019.

Look at X Sharp!

Copyright 2019, Eric Selje Page 4 of 32

Compilers
Nantucket Software took a different approach to their dBase clone. Rather than a faithful
reproduction of dBase and its runtime interpreter, they decided to create a true linker and
compiler for the language. Their product, Clipper, was also very successful and eventually
was bought by massive conglomerate Computer Associates (CA) and renamed CA-Clipper
to match their other products. The last version of DOS-based CA-Clipper was released was
released in 1997, but by that that Windows became mainstream.

CA created a corresponding Windows version of Clipper they codenamed Aspen but which
eventually was released as Visual Objects (VO). Remember that abbreviation, VO, because
that’s the origin of X#. In CA’s liquidation, Visual Objects was sold to a company called
GrafX and continued until its last release in 2012.

Clipper inspired multiple descendants1. Some of the more notable ones are Harbour, an
open source, multi-platform clone created by folks who weren’t happy with CA’s
proprietary stewardship of Clipper. Another was Alaska Software’s xBase++, which we’re
familiar with from their participation at Southwest Fox for many years. A third product
called FlagShip was geared towards Linux/UNIX developers, with a Windows version
eventually released as well. Each of these created small variations of the base dialect

But the most interesting descendant was GrafX’s own attempt to rewrite the Clipper
compiler from scratch to take advantage of the .NET framework on Windows. This
endeavor was dubbed Vulcan.NET as a nod to Wayne Ratliff’s original product. If you never
heard of Vulcan.NET, it may be because (the now-defunct) GrafX didn’t put a lot of
marketing behind it. This frustrated a core group on their development team, who left in
2015 to start a new effort. The result is X#.

1 Quicksilver, dbXL, Multibase, Recital, Eagle, Arago to name a few.

Look at X Sharp!

Copyright 2019, Eric Selje Page 5 of 32

First Look at XSharp
X# is not Visual FoxPro. This is a not a product that will allow you to load your existing
projects, recompile them, and run flawlessly like FoxBase was to dBase. To paraphrase the
immortal words of David S. Pumpkins, “It’s its own thing!”ii Its closest kin is really C#.

As a language, X# is in itself another xBase derivative, which they call “Core.” But because
XSharp has a long ancestry, its developers have included support for different dialects such
as its immediate predecessors Vulcan.NET and Visual Objects, as well as more distant
cousins Harbour, xBase++. There’s a concordance on the X# site to show differences in
dialects.2 The developers are adding support for the Visual FoxPro dialect, but as of this
writing very little of your code will run without modification. Now before you get too
discouraged about that please read on because you were probably going to have to rewrite
your code a bit anyway, and you may find that the X# way of doing things is preferable.

The Development Environment(s)
Let’s begin our look at X# with the very simplest things you could do, “Hello, World”. In VFP
we could fire up our VFP9.EXE, type

 ? "Hello x#!"

into the Command Window and see the result (not shown because you get it I’m sure).

X# doesn’t quite work like that. There are three ways to run X# code. You can use Visual
Studio or the included XIDE to create compiled applications, but neither has what we
would call a Command Window. Visual Studio has an “Immediate Window” which comes
close but it doesn’t support X# syntax yet. I’ll get to those two in a bit. To get a Command
Windows as we’re used to, we’d use XSI.exe, an implementation of Windows Command
Line3 that comes with X#. If you’re familiar with Python’s REPL utility, it’s a lot like that. 4

2 https://www.xsharp.info/help/dialects.html
3 https://devblogs.microsoft.com/commandline/
4 REPL stands for Read-Evaluate-Print-Loop: Read the Input, Evaluation the Input, Print the Output, Loop
back to the beginning.

https://www.xsharp.info/help/dialects.html

Look at X Sharp!

Copyright 2019, Eric Selje Page 6 of 32

XSI is a nice way to get used to trying out some of the X# commands, and you can also run
PRGs (scripts) you created with your favorite text editor, but it’s not an editor itself.

Note that the extension on this sample is PRGX, which X# associates with XSI.exe in
Windows upon installation, but there’s nothing else special about it. You should not run
entire applications in XSI.

XIDE
The first “real” IDE that you may want to use with X# is called XIDE. (I’m not quite sure how
one would pronounce that but I’d like to think it’s similar to “Excite”.) XIDE is an optional
component when you’re installing X#. One very interesting fact about XIDE is that it is
written and compiled in X# itself, so you can see the potential of the language! It’s very
quick to load and has a lot of nice features including a project manager, form designer,
comprehensive help files for both itself and the X# language, and a debugger.

Despite having a Project tab, you cannot load your existing Visual FoxPro projects. X# has
no idea what PJX files are (or SCX, FRX, LBX or any other binaries for that matter, but we’ll
get to those later). Projects in XIDE are collections of Applications. In Figure 1 you can see
the SWFox2019 Project is open, and it contains two applications: DemoForm1 and
VFPClasses.

In the Project Explorer you can see another difference, the <References> branch of the
project’s treeview. References are external libraries that your project uses, somewhat akin
to the class libraries that you SET CLASSLIB TO in VFP. Because X# is a .NET Language, you
can reference and use anything in the .NET Framework, as well as 3rd party libraries. We’ll
get to that later when we discuss the X# language itself.

You can also see similarities in XIDE to Visual FoxPro. The debugger, toolbox, properties,
and locals tabs should all look familiar (Figure 2), and the Form Designer is pretty easy to
figure out. There is intellisense. All in all XIDE is a very straightforward environment that
Visual FoxPro developers with no prior experience should be able to grasp fairly quickly.

Look at X Sharp!

Copyright 2019, Eric Selje Page 7 of 32

Figure 1: XIDE with Form Designer showing

Figure 1: Property Sheet Figure 3: Extensive Form ToolBox

Look at X Sharp!

Copyright 2019, Eric Selje Page 8 of 32

Notice in the Toolbox (Figure 3) that X# has built-in access to some controls that you’d
have to use ActiveX controls for in Visual FoxPro, including TreeView, RichTextBox, and
DateTime pickers. In addition to the built-in controls you can use any .NET capable
controls, such as DBi’s Studio Controls for .NET and Solutions Schedule for .NET.

At the moment there is no panacea for converting VFP’s forms directly into .NET WinForms
because of the large differences, though there are some great posts about strategies for
doing this manuallyiii and some conversion consultants claim to have created tools to do a
lot of the manual labor for them. There is no facility at all for reports or labels in XIDE.

Visual Studio
The other IDE for X# is Visual Studio. You can use either the free Community Edition or the
full-blown version of Visual Studio, which is not free.

Visual Studio has all the same features as XIDE as well as a lot more such as built-in
revision control, database explorer, integrated unit testing, and code and performance
analyzers. Visual Studio also has an Object Browser that lets you view the interfaces of
those referenced libraries so you can see what properties and methods they have.

X# ships with some simple templates for creating applications, including some “FoxPro
Dialect” templates (Figure 4) as well as VO and Vulcan (you know what those are now
thanks to our brief history lesson).

Figure 4: Visual Studio X# Templates

Look at X Sharp!

Copyright 2019, Eric Selje Page 9 of 32

When you choose Class Library FoxPro Dialect, the project that gets created defaults to the
FoxPro Dialect and the output will be a DLL that you can use in other projects (Figure 5).
Notice how Visual Studio’s nomenclature is Solutions and Projects, rather than Projects and
Applications like XIDEs uses. Also notice how this template automatically include a lot of
the references you’re likely to need but does not include references to User Interface
classes that you’re not likely to need (System.Console, e.g.).

When you choose the FoxPro Console Application template, the defaults change to an EXE
output but the dialect stays at FoxPro, which means the compiler is tuned to the syntax of
FoxPro code.

What if you want to create a Windows App with a FoxPro dialect? There’s no template
specifically for that but you could choose either WPF or Windows Forms (WebForms)
Application from the template list and manually switch the dialect to FoxPro.

What about a Web Application? An ASP.Net based web application can absolutely use the
class libraries created in X#, and from any dialect including FoxPro, but cannot use the user
interface (forms).

Figure 5: Visual Studio, showing Project Properties and the Server and Solution Explorers

Look at X Sharp!

Copyright 2019, Eric Selje Page 10 of 32

The Language
Let’s look at the code that is provided to us by each of those templates and you’ll start to
get a feel for some of the major differences. Starting with the FoxPro Console Application,
which creates this PRG by default

USING System
USING System.Collections.Generic
USING System.Linq
USING System.Text

FUNCTION Start() AS VOID STRICT
 ? "Hello World! Today is ",ToDay()
 WAIT
RETURN

A couple of things to notice.

First, the USING statements. These are akin to Visual FoxPro’s SET LIBRARY TO statements.
Include these and you’ll have access to all of their functionality. [I like this syntax better so
quite a while ago I added a USING() function to my apps that essentially checks to see if a
class library is already in scope, and if not, adds it].

Second, the application must have a function called Start() somewhere in it. This is it’s
jumping in point. Take it out or rename it and compilation will fail.

Lastly, if you have a sharp eye you may have noticed that this function uses the ToDay()
function, and you’ve been around long enough to know that VFP does not have one of those.
We specifically chose a FoxPro Console Application, and doublechecked that it used the
FoxPro dialect, so where does this ToDay() function come from? It turns out that choosing
the FoxPro dialect does not constrain us only to the commands that Visual FoxPro used; We
still have the entire X# Core language at our disposal.

It has already been mentioned, but it’s important to remember always that X# is a .NET
language, which means a few things:

You have access to the entire .NET ecosystem
This is exciting because .NET is almost twenty years old and there are a massive number of
third-party tools in addition to what’s already in the existing .NET Framework. Need the
latest decryption algorithm? A JSON handler? Logging? Exception handling? SSH transfers?
Include a reference to the library in your application and it’s available to you. Almost
anything you can think of that has a VFPx (or some other third party) solution has a .NET
equivalent, and a lot more.

Look at X Sharp!

Copyright 2019, Eric Selje Page 11 of 32

Everything is an object
In VFP a string is a string, an integer is an integer, and a date is a date. Those are the base
classes. But in .NET everything is an object, and all objects are derived from the base class
OBJECT. A string is actually a String object, integers ae Integer objects, a date is a Date
object, and they’re all OBJECT objects. And X# has a lot more datatypes (see Appendix A).

You may wonder how you do a VARTYPE() test if everything is going to return ‘O’ for
object. X# has an IsInstanceOf() / IS function that can tell you.

 ? IsInstanceOf(cString, "STRING") // .T.
 ? cString IS STRING // .T.

Everything being an object means a lot of functions that are necessary in VFP are already
built-in methods, or properties, of the objects in X#. 5

 FUNCTION Start() AS VOID
 LOCAL cString AS STRING
 cString := "Hello, World!"
 ? cString.Length // Length is a property of String
 ? cString.ToUpper() // No need for a separate UPPER() function
 ? cString.Replace('!', '.') // Hats off to you if you can always remember the name
of the VFP function that does this
 Wait
RETURN

You can do similar things with date fields. Notice how every object also has a ToString()
method that allows you to tweak the format of the output.6

 VAR dToday := datetime.now // Using the now property of the static DateTime type
 ? dToday.date // 10/06/2019 12:00:00 AM
 ? dToday.DayOfWeek // Sunday
 ? dToday.ToString(“d”) // 10/06/2019
 ? dToday.ToString(“D”) // Sunday, October 6, 2019

And with numbers

 VAR iValue := 1234.56
 ? iValue.ToString(“C”) // $1,234.56

5 For a complete list of all the methods and ToString() parameters, refer to the .NET documentation on
Microsoft Docs for the type of object you’re dealing with. If it works in .NET it should work in X# as well.

6 VFPx’s FoxTypes class library adds much of this functionality to native VFP.

Look at X Sharp!

Copyright 2019, Eric Selje Page 12 of 32

Everything is strongly typed
For better and worse, VFP is a loosely-typed language. This allowed us to pay less attention
to declaring types and allowed us to get away with a lot of things. The core X# language is
strongly typed. The advantage to this is the Intellisense is more helpful and the compiler
will catch errors before runtime. This comes at the expense of flexibility, but it’s a fair price
to pay. There are workarounds to make variables more dynamic.

Namespaces
Let’s take a look at what those template created for us when we chose a FoxPro Class
Library. Here we get a PRG that looks like this:

BEGIN NAMESPACE FoxClassLibrary
 CLASS Class1
 CONSTRUCTOR() STRICT
 RETURN
 END CLASS
END NAMESPACE

You’ll notice that we now get “Namespaces”. This allows us to have classes with the same
name without having conflicts. The class that’s created from this code will be called
FoxClassLibrary.Class1, and we can have a class named Class1 in other namespaces
without issues.

You’ll probably also notice that this isn’t the way we DEFINE CLASS in Visual FoxPro.
There’s no INIT() method and no DESTROY() method either. As of this writing the
developers are actively working on implementing VFP’s DEFINE CLASS, but because of
some inherent differences between the way VFP has always done things and the way .NET
does things they are deliberating the proper defaults (e.g. Is our INIT() the same as the
Constructor or a separate method?ivv).

Overloading and Getters/Setters
In X# (and all of .NET), you can overload the Contructor() method to accept different
number and types of parameters. In the following example of Animal classes, we could
have constructors that instantiate animals with 8 legs by sending 8 as a parameter in the
constructor and assigning that to iFeet.

Working Application and Class Libraries Together
Here is an example expands the templates to show you how classes are defined in X# and
how to use those classes in your application. Even though the syntax mixes X# and .NET, I
think any Visual FoxPro developer will be able to easily comprehend what’s going on here.

Look at X Sharp!

Copyright 2019, Eric Selje Page 13 of 32

BEGIN NAMESPACE FoxClassLibrary
 CLASS Animal
 PUBLIC iFeet AS Int

 CONSTRUCTOR()
 iFeet := 4
 RETURN

 public Function Sound() As String
 Return ""
 END Function
 END CLASS

CLASS Primate INHERIT Animal
 CONSTRUCTOR()
 iFeet := 2
 RETURN

 public FUNCTION Sound() As String
 Return "Screech!"
 END FUNCTION

 END CLASS

CLASS Human INHERIT Primate

 public FUNCTION Sound() As String
 Return "Hello, World!"
 END FUNCTION

 END CLASS

END NAMESPACE

Figure 3: Class Library Showing Inheritance

// Animals.prg
USING System

FUNCTION Start() AS VOID

 VAR oAnimal := FoxClassLibrary.Animal{}
 VAR oPrimate := FoxClassLibrary.Primate{}
 VAR oHuman := FoxClassLibrary.Human{}

 System.Console.WriteLine("Animals generally say '{0}' and have {1} feet.", oAnimal.Sound(),
oAnimal.iFeet)
 System.Console.WriteLine("Primates say '{0}' and have {1} feet.", oPrimate.Sound(), oPrimate.iFeet)
 System.Console.WriteLine("Humans say '{0}' and have {1} feet.", oHuman.Sound(), oHuman.iFeet)

 wait

 RETURN

Figure 2: Console Application that uses Classes

Look at X Sharp!

Copyright 2019, Eric Selje Page 14 of 32

New Language Features
Every derivative of xBase has added features, and X# is no exception. There are many new
commands that Visual FoxPro doesn’t have because they came from the Clipper side of
things. Here are some other new features that I’d like to highlight:

Enhanced Strings
In Visual FoxPro you’d often see syntax like this, which maxes out the string delimiters and
concatenates different parts to make it all proper.

 cString = [Bob wrote, "It’s time to went] + "[sic]" + [to a new version".] + chr(13)

In X# you can use enhanced strings to simply the syntax:

cString = e"Bob wrote, \"It’s time to went [sic] to a new version\".\n"

Interpolated Strings
Interpolated strings allow you to easily embed variables into a string.

cHeader = "This is a header line"
cHTML = ei"<TABLE><TH>{cHeader}</TH></TABLE>"

and you can combine the two:

cHeader = "This is a header line"
cClass = "myTableClass"
cHTML = ei"<TABLE class=\"{myTableClass}\"><TH>{cHeader}</TH></TABLE>"

LINQ
We love our embedded SQL commands (SELECT, INSERT, DELETE) in Visual FoxPro, but
because of the order of the syntax we don’t get Intellisense. Microsoft derived LINQ to
overcome that issue, so instead of

SELECT field FROM table alias WHERE otherfield = VALUE ORDER BY field INTO output

LINQ turns that around to say

Var Output =
 FROM alias IN table
 WHERE <condition>
 ORDERBY <fields>
 SELECT <fields>

We usually think of SELECT as pulling from a table, but LINQ can extract data from any
enumerable data source: arrays, lists, even literals like strings. And because we throw the
alias at the beginning, Intellisense can help us out.

Look at X Sharp!

Copyright 2019, Eric Selje Page 15 of 32

Codeblocks
This comes from the Clipper side. Codeblocks are similar to macros but more like
anonymous functions. EVAL() is used to call them, with the parameters afterwards.

FUNCTION Start() AS VOID
 LOCAL cb AS CODEBLOCK
 cb := {|a,b| a * b}
 ? Eval(cb, 1,2)
 WAIT
RETURN

Anonymous Functions (Lambdas)
Lambda functions may seem to be the “new” thing, but they’ve actually been around since
1958 in LISP and their roots go back to math theory much older than that. It’s essentially a
way of saying “here’s a function that I don’t really need to name because I’m only using it
for a very short and specific time,” like the del function below.

DELEGATE Multiply(x AS REAL8) AS REAL8
FUNCTION Start AS VOID

LOCAL del AS Multiply
// Lambda with untyped parameters

 del := {e => e * e}
 ? del
 ? del(1)
 ? del(2)
 ? "Lambda with typed parameters"
 del := {e as REAL8 => e * e * e}

 ? del(3)

? del(4)
 ? "Anonymous Method Expression"

del := DELEGATE(e as REAL8) {
 e := e * e * e * e
 return e
 }

? del(5)
 Console.ReadLine()
RETURN

Look at X Sharp!

Copyright 2019, Eric Selje Page 16 of 32

Working with Data
Visual FoxPro is a fine general purpose language for business apps, but it’s really good at
manipulating data. That data can be from any ODBC source, but it also has its native DBF
table format, CDX index format, and DBC database container format.

X# is also made for manipulating data, but it cannot assume that local data is going to be in
the DBF/CDX format because its ancestry came from the DBF/NTX side of things. So they
have the concept of Replaceable Database Drivers (RDDs) that allow their classes to work
on any of the popular xBase table types [note that X# often still uses the nomenclature of
database when they’re referring to individual tables, a habit some VFP can’t shake either
though many have.] as well as Advantage Database Server. The RDD that we want for our
native local tables is called “DBFVFP,” a successor to “DBFCDX” that includes VFP-specific
data types. You tell X# that that’s the default RDD you want to use by issuing

RDDSetDefault("DBFVFP")

If you’ve ever wished that tables were more object-oriented, then you’re going to love X#
because data manipulation is accomplished through the CoreDb class. While you’d
normally issue the

USE <tablename>

in VFP, that syntax doesn’t work (by default) in X#. Instead, X# natively “uses” a table with
this syntax:

 CoreDb.UseArea(True, "DBFVFP", cTable, cAlias, lShared, lReadOnly)

A couple of things to note:

1. That’s just one of 3 overloaded constructors for CoreDb.UseArea()

2. When you use CoreDb methods, you cannot leave parameters off because X# takes
them for null, not False, and null is not allowed.

3. There are quite a few commands and functions that are really just wrappers around
the CoreDb function, and will allow you to leave parameters off. For example,

DBSkip()

 is the same as

CoreDb.Skip()

 But

Look at X Sharp!

Copyright 2019, Eric Selje Page 17 of 32

UseArea in an alias for CoreDb.UseArea, and you may see these aliases used
interchangeably in sample code. is the same as DBSkip, e.g. There are quite a few native
functions in X#, like Regardless of which syntax you use, there is a CoreDB class
underneath, and it has a lot of properties and methods that are separate commands in
Visual FoxPro. I really appreciate the objectification of tables.

4.

If you’re thinking all this CoreDB class is dealbreaker because you don’t want to learn new
syntax, do not fret. The X# team has included a header file (see Appendix B) that you can
include in your source code that aliases a lot of our beloved commands to the CoreDb
method. If you include that

#include "C:\Program Files (x86)\XSharp\Include\dbcmd.xh"

You can now go use the USE.

This include file is actually pretty powerful. I discovered that SCAN/ENDSCAN aren’t
supported in X#, but by adding these two lines to the dbcmd.xh file, they now are:

#command SCAN => CoreDb.GoTop(); DO WHILE NOT CoreDb.Eof()
#command ENDSCAN => CoreDb.Skip(1); ENDDO

Here’s what some X# code looks like before including dbcmd.xh

 LOCAL cDBF = "c:\dev\x#\zips.dbf"
 CoreDb.UseArea(True, "DBFVFP", cDBF, "ZipCodes", True, False)
 CoreDb.GoTop()
 ? CoreDb.Alias(CoreDb.GetSelect())
 DO WHILE NOT CoreDb.Eof()
 ? zips->city, zips->state, zips->zip_code
 CoreDb.Skip(1)
 ENDDO
 CoreDb.CloseArea()

And this familiar looking code does the same exact thing after I added that (and include my
SCAN/ENDSCAN aliases)

 USE (cDbf) ALIAS ZipCodes
 SCAN
 ? city, state, zip_code
 ENDSCAN
 USE

Does the table->field bring FoxBase flashbacks for you? It did for me. The X# team is
working on the table.field syntax, but by adding the

 FIELD city,state,zip_code // Need this to avoid workarea-> syntax

Look at X Sharp!

Copyright 2019, Eric Selje Page 18 of 32

command you can avoid adding an alias altogether. At this point the FoxPro dialect in X#
does not prioritize field names over memory variables like Visual FoxPro does.

Look at X Sharp!

Copyright 2019, Eric Selje Page 19 of 32

What’s Missing?
Although X# has added a lot of features, there are things that we Visual FoxPro developers
love to use that aren’t natively in there yet. Here’s a list of the big ones:

• Embedded SQL Commands. There is LINQ, but that’s not quite the same. And you can
work with database servers by sending SQL commands much like we do SQLExec()
now, but there’s not yet native support for doing SELECT from native VFP tables.

• Cursors. X# (well, .NET) has a datatable class which is similar, though object-based
and powerful but not exactly the same as cursors in Visual FoxPro.

• Built-in Reports. There are a lot of 3rd party reporting products for .NET but nothing
is included in X#

• Scatter/Gather

• Database Support, including referential integrity

Compiling
X# is a .NET language (have I mentioned that?). X# gets a leg up on other xBase compilers
because it takes advantage of Microsoft’s Roslyn compiler, which was open-sourced a few
years ago.vi

Both XIDE and Visual Studio development environments have direct hooks into the
compiler. I like the immediate and interactive feedback you get from the compilers.

Look at X Sharp!

Copyright 2019, Eric Selje Page 20 of 32

Figure 5: XIDE Compiler Options

Figure 4: Visual Studio Compiler Options

Look at X Sharp!

Copyright 2019, Eric Selje Page 21 of 32

The resulting EXE’s may seem very small

But in order to run the client must have the targeted .NET Framework installed on their PC
(which they probably do as their distributed by Microsoft as part of Windows Updates or
other applications as needed), as well as the runtime for the dialect of X# that was chosen.

Conclusion
I am very impressed with X# as a development tool. I believe the core development team is
very, ahem, sharp and it looks to be a viable entity. Because it takes advantage of the .NET
Compiler, a future version of X# that uses just the .NET Core could compile applications
that run on Linux and Mac platforms as well.

The X# developers are actively working on integrating Visual FoxPro functionality. I
suspect if we get on board and support them, they will continue to do this, but if there’s
apathy or indifference they’ll shift their limited resources elsewhere. You can support them
by participating in the forums at www.xsharp.info, and by joining the “Friends of XSharp”.
This support program gives you access to all of the X# source code, premier customer
support, direct access to the developers, and more frequent product updates.

In true open source fashion you can also fork the source code, enhance it, and submit a Pull
Request back to the developers. If your code is accepted it will go into the product. There’s
also work to be done on the documentation and help file.

This has been a brief overview, and I would have liked to have more time to get into more
details. The target is also moving quickly as new updates are being released often.

My conclusion is that although X# is not a trivial port for existing applications, it does
provide developers a way to step into a modern development ecosystem while leveraging
their existing knowledge. Try rewriting your smaller applications in it to get a feel for what
it can do. Migrate your business logic and test it from your existing FoxPro applications
using wwDotNetBridge.

It’s very well suited for new data-driven Windows applications. Once you learn X# it’s a
small step from knowing C# as well. I’ve really enjoyed playing with X# and look forward to
converting some applications and creating new ones with it. X# has put some joy back into
programming for me.

http://www.xsharp.info/

Look at X Sharp!

Copyright 2019, Eric Selje Page 22 of 32

Appendix A: X# Data Types
 Type Category .Net Name Size in Bits

BYTE Unsigned Integer Byte 8

CHAR Character Char 16

DWORD Unsigned Integer UInt32 32

DECIMAL Numeric Decimal 96

DYNAMIC Multi purpose Dynamic Reference (32 or 64 bits)

INT Signed Integer Int32 32

INT64 Signed Integer Int64 64

LOGIC Logic Boolean 8

LONGINT Signed Integer Int32 32

OBJECT Multi purpose Object Reference (32 or 64 bits)

PTR Multi purpose Intptr Reference (32 or 64 bits)

REAL4 Floating Point Single 32

REAL8 Floating Point Double 64

SBYTE Signed Integer SByte 8

SHORT Signed Integer Int16 16

STRING String String Reference (32 or 64 bits)

UINT64 Unsigned Integer Uint64 64

VOID Not a type Void 0

WORD Unsigned Integer UInt16 16

mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/byte.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/char.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/dword.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/decimal.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/dynamic.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/int.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/int64.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/logic.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/int.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/object.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/ptr2.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/real4.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/real8.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/sbyte.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/short.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/string.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/uint64.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/void.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/word.html

Look at X Sharp!

Copyright 2019, Eric Selje Page 23 of 32

xBase Specific Types
Type

ARRAY

CODEBLOCK

DATE

FLOAT

PSZ

SYMBOL

USUAL

User Defined Types

Type

CLASS

DELEGATE

ENUM

Generic Types

INTERFACE

STRUCTURE

UNION

VOSTRUCT

mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/array.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/codeblock.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/date.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/float.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/psz.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/symbol.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/usual.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/class.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/delegate.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/enum.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/generic-types.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/interface.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/structure.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/union.html
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CXSharp%5CHelp%5CXSharp.chm::/vostruct.html

Look at X Sharp!

Copyright 2019, Eric Selje Page 24 of 32

Appendix B: The dbcmd.xh file
Including this header file allows you to alias our beloved FoxPro commands to X#’s syntax.,
most of which are methods on the CoreDb class.

///
// DbCmds.xh
//
// XSharp Database commands
//
// Copyright (c) XSharp BV. All Rights Reserved.
// Licensed under the Apache License, Version 2.0.
// See License.txt in the project root for license information.
//
// IMPORTANT: Functions beginning with an underscore
// character are reserved, version-dependent functions.
// These functions should not be called directly.
//
// Caution: do not modify this file. It will be overwritten during product updates
//

* DB SETs
*

#command SET EXCLUSIVE <x:ON,OFF,&> => SetExclusive(<(x)>)
#command SET EXCLUSIVE (<x>) => SetExclusive(<x>)

#command SET SOFTSEEK <x:ON,OFF,&> => SetSoftSeek(<(x)>)
#command SET SOFTSEEK (<x>) => SetSoftSeek(<x>)

#command SET UNIQUE <x:ON,OFF,&> => SetUnique(<(x)>)
#command SET UNIQUE (<x>) => SetUnique(<x>)

#command SET DELETED <x:ON,OFF,&> => SetDeleted(<(x)>)
#command SET DELETED (<x>) => SetDeleted(<x>)

* DB
*

#command SELECT <whatever> => dbSelectArea(<(whatever)>)
#command SELECT <f>([<list,...>]) => dbSelectArea(<f>(<list>))

#command USE => dbCloseArea()

#command USE <(db)> ;
 [VIA <rdd>] ;
 [ALIAS <a>] ;
 [<new: NEW>] ;
 [<ex: EXCLUSIVE>] ;

Look at X Sharp!

Copyright 2019, Eric Selje Page 25 of 32

 [<sh: SHARED>] ;
 [<ro: READONLY>] ;
 [INDEX <(index1)> [, <(indexn)>]] ;
 ;
 => dbUseArea(;
 <.new.>, <rdd>, <(db)>, <(a)>, ;
 if(<.sh.> .or. <.ex.>, !<.ex.>, NIL), <.ro.> ;
) ;
 ;
 [; dbSetIndex(<(index1)>)] ;
 [; dbSetIndex(<(indexn)>)]

#command SET INDEX TO [<(index1)> [, <(indexn)>]] ;
 ;
 => dbClearIndex() ;
 ;
 [; dbSetIndex(<(index1)>)] ;
 [; dbSetIndex(<(indexn)>)]

#command INDEX ON <key> TO <(file)> [<u: UNIQUE>] ;
 => dbCreateIndex(;
 <(file)>, <"key">, <{key}>, ;
 IIF(<.u.>, TRUE, NIL) ;
)

#command REINDEX => dbReindex()
#command SET ORDER TO <n> => dbSetOrder(<n>)
#command SET ORDER TO => dbSetOrder(0)

#command APPEND BLANK => dbAppend()
#command PACK => dbPack()
#command ZAP => dbZap()
#command UNLOCK => dbUnlock()
#command UNLOCK ALL => dbUnlockAll()
#command COMMIT => dbCommitAll()

#command GOTO <n> => dbGoto(<n>)
#command GO <n> => dbGoto(<n>)
#command GOTO TOP => dbGoTop()
#command GO TOP => dbGoTop()
#command GOTO BOTTOM => dbGoBottom()
#command GO BOTTOM => dbGoBottom()

#command SKIP => dbSkip(1)
#command SKIP <n> => dbSkip(<n>)
#command SKIP ALIAS <a> => <a> -> (dbSkip(1))
#command SKIP <n> ALIAS <a> => <a> -> (dbSkip(<n>))

#command SEEK <xpr> => dbSeek(<xpr>)

Look at X Sharp!

Copyright 2019, Eric Selje Page 26 of 32

#command FIND <*text*> => dbSeek(<(text)>)
#command FIND := <xpr> => (find := <xpr>)
#command FIND = <xpr> => (find := <xpr>)

#command CONTINUE => dbContinue()

#command LOCATE ;
 [FOR <FOR>] ;
 [WHILE <WHILE>] ;
 [NEXT <NEXT>] ;
 [RECORD <rec>] ;
 [<rest:REST>] ;
 [ALL] ;
 ;
 => dbLocate(<{FOR}>, <{WHILE}>, <NEXT>, <rec>, <.rest.>)

#command SET RELATION TO => DbClearRelation()

#command SET RELATION ;
 [<add:ADDITIVE>] ;
 [TO <key1> INTO <(alias1)> [, [TO] <keyn> INTO <(aliasn)>]] ;
 ;
 => if (!<.add.>) ;
 ; DbClearRelation() ;
 ; END ;
 ;
 ; dbSetRelation(<(alias1)>, <{key1}>, <"key1">) ;
 [; dbSetRelation(<(aliasn)>, <{keyn}>, <"keyn">)]

#command SET FILTER TO => dbClearFilter(NIL)
#command SET FILTER TO <xpr> => dbSetFilter(<{xpr}>, <"xpr">)

#command SET FILTER TO <x:&> ;
 => IF (Empty(<(x)>)) ;
 ; dbClearFilter() ;
 ; ELSE ;
 ; dbSetFilter(<{x}>, <(x)>) ;
 ; END

#command REPLACE [<f1> WITH <x1> [, <fn> WITH <xn>]] ;
 [FOR <FOR>] ;
 [WHILE <WHILE>] ;
 [NEXT <NEXT>] ;
 [RECORD <rec>] ;
 [<rest:REST>] ;
 [ALL] ;
 ;
 => DBEval(;
 {|| _FIELD-><f1> := <x1> [, _FIELD-><fn> := <xn>]}, ;
 <{FOR}>, <{WHILE}>, <NEXT>, <rec>, <.rest.> ;

Look at X Sharp!

Copyright 2019, Eric Selje Page 27 of 32

)

#command REPLACE <f1> WITH <v1> [, <fN> WITH <vN>] ;
 => _FIELD-><f1> := <v1> [; _FIELD-><fN> := <vN>]

#command DELETE ;
 [FOR <FOR>] ;
 [WHILE <WHILE>] ;
 [NEXT <NEXT>] ;
 [RECORD <rec>] ;
 [<rest:REST>] ;
 [ALL] ;
 ;
 => DBEval(;
 {|| dbDelete()}, ;
 <{FOR}>, <{WHILE}>, <NEXT>, <rec>, <.rest.> ;
)

#command RECALL ;
 [FOR <FOR>] ;
 [WHILE <WHILE>] ;
 [NEXT <NEXT>] ;
 [RECORD <rec>] ;
 [<rest:REST>] ;
 [ALL] ;
 ;
 => DBEval(;
 {|| dbRecall()}, ;
 <{FOR}>, <{WHILE}>, <NEXT>, <rec>, <.rest.> ;
)

#command DELETE => dbDelete()
#command RECALL => dbRecall()

#command CREATE <(file1)> [FROM <(file2)>] ;
 => _DbCreate(<(file1)>, <(file2)>)

#command COPY [STRUCTURE] [EXTENDED] [TO <(file)>] ;
 => dbCopyXStruct(<(file)>)

#command COPY [STRUCTURE] [TO <(file)>] [FIELDS <fields,...>] ;
 => dbCopyStruct(<(file)>, { <(fields)> })

#command COPY [TO <(file)>] [DELIMITED [WITH <*delim*>]] ;
 [FIELDS <fields,...>] ;
 [FOR <FOR>] ;

Look at X Sharp!

Copyright 2019, Eric Selje Page 28 of 32

 [WHILE <WHILE>] ;
 [NEXT <NEXT>] ;
 [RECORD <rec>] ;
 [<rest:REST>] ;
 [ALL] ;
 ;
 => dbCopyDelim(;
 <(file)>, <(delim)>, { <(fields)> }, ;
 <{FOR}>, <{WHILE}>, <NEXT>, <rec>, <.rest.> ;
)

#command COPY [TO <(file)>] [SDF] ;
 [FIELDS <fields,...>] ;
 [FOR <FOR>] ;
 [WHILE <WHILE>] ;
 [NEXT <NEXT>] ;
 [RECORD <rec>] ;
 [<rest:REST>] ;
 [ALL] ;
 ;
 => dbCopySDF(;
 <(file)>, { <(fields)> }, ;
 <{FOR}>, <{WHILE}>, <NEXT>, <rec>, <.rest.> ;
)

#command COPY [TO <(file)>] ;
 [FIELDS <fields,...>] ;
 [FOR <FOR>] ;
 [WHILE <WHILE>] ;
 [NEXT <NEXT>] ;
 [RECORD <rec>] ;
 [<rest:REST>] ;
 [ALL] ;
 ;
 => dbCopy(;
 <(file)>, { <(fields)> }, ;
 <{FOR}>, <{WHILE}>, <NEXT>, <rec>, <.rest.> ;
)

#command APPEND [FROM <(file)>] [DELIMITED [WITH <*delim*>]] ;
 [FIELDS <fields,...>] ;
 [FOR <FOR>] ;
 [WHILE <WHILE>] ;
 [NEXT <NEXT>] ;
 [RECORD <rec>] ;
 [<rest:REST>] ;
 [ALL] ;
 ;
 => dbAppDelim(;
 <(file)>, <(delim)>, { <(fields)> }, ;
 <{FOR}>, <{WHILE}>, <NEXT>, <rec>, <.rest.> ;
)

Look at X Sharp!

Copyright 2019, Eric Selje Page 29 of 32

#command APPEND [FROM <(file)>] [SDF] ;
 [FIELDS <fields,...>] ;
 [FOR <FOR>] ;
 [WHILE <WHILE>] ;
 [NEXT <NEXT>] ;
 [RECORD <rec>] ;
 [<rest:REST>] ;
 [ALL] ;
 ;
 => dbAppSDF(;
 <(file)>, { <(fields)> }, ;
 <{FOR}>, <{WHILE}>, <NEXT>, <rec>, <.rest.> ;
)

#command APPEND [FROM <(file)>] ;
 [FIELDS <fields,...>] ;
 [FOR <FOR>] ;
 [WHILE <WHILE>] ;
 [NEXT <NEXT>] ;
 [RECORD <rec>] ;
 [<rest:REST>] ;
 [ALL] ;
 ;
 => dbApp(;
 <(file)>, { <(fields)> }, ;
 <{FOR}>, <{WHILE}>, <NEXT>, <rec>, <.rest.> ;
)

#command SORT [TO <(file)>] [ON <fields,...>] ;
 [FOR <FOR>] ;
 [WHILE <WHILE>] ;
 [NEXT <NEXT>] ;
 [RECORD <rec>] ;
 [<rest:REST>] ;
 [ALL] ;
 ;
 => dbSort(;
 <(file)>, { <(fields)> }, ;
 <{FOR}>, <{WHILE}>, <NEXT>, <rec>, <.rest.> ;
)

#command TOTAL [TO <(file)>] [ON <key>] ;
 [FIELDS <fields,...>] ;
 [FOR <FOR>] ;
 [WHILE <WHILE>] ;
 [NEXT <NEXT>] ;
 [RECORD <rec>] ;
 [<rest:REST>] ;
 [ALL] ;

Look at X Sharp!

Copyright 2019, Eric Selje Page 30 of 32

 ;
 => dbTotal(;
 <(file)>, <{key}>, { <(fields)> }, ;
 <{FOR}>, <{WHILE}>, <NEXT>, <rec>, <.rest.> ;
)

#command UPDATE [FROM <(alias)>] [ON <key>] ;
 [REPLACE <f1> WITH <x1> [, <fn> WITH <xn>]] ;
 [<rand:RANDOM>] ;
 ;
 => dbUpdate(;
 <(alias)>, <{key}>, <.rand.>, ;
 {|| _FIELD-><f1> := <x1> [, _FIELD-><fn> := <xn>]} ;
)

#command JOIN [WITH <(alias)>] [TO <file>] ;
 [FIELDS <fields,...>] ;
 [FOR <FOR>] ;
 ;
 => dbJoin(<(alias)>, <(file)>, { <(fields)> }, <{FOR}>)

#command COUNT [TO <var>] ;
 [FOR <for>] ;
 [WHILE <while>] ;
 [NEXT <next>] ;
 [RECORD <rec>] ;
 [<rest:REST>] ;
 [ALL] ;
 ;
 => <var> := 0 ;
 ; DBEval(;
 {|| <var> := <var> + 1}, ;
 <{for}>, <{while}>, <next>, <rec>, <.rest.> ;
)

#command SUM [<x1> [, <xn>] TO <v1> [, <vn>]] ;
 [FOR <for>] ;
 [WHILE <while>] ;
 [NEXT <next>] ;
 [RECORD <rec>] ;
 [<rest:REST>] ;
 [ALL] ;
 ;
 => <v1> := [<vn> :=] 0 ;
 ; DBEval(;
 {|| <v1> := <v1> + <x1> [, <vn> := <vn> + <xn>]}, ;
 <{for}>, <{while}>, <next>, <rec>, <.rest.> ;
)

#command AVERAGE [<x1> [, <xn>] TO <v1> [, <vn>]] ;

Look at X Sharp!

Copyright 2019, Eric Selje Page 31 of 32

 [FOR <for>] ;
 [WHILE <while>] ;
 [NEXT <next>] ;
 [RECORD <rec>] ;
 [<rest:REST>] ;
 [ALL] ;
 ;
 => M->__Avg := <v1> := [<vn> :=] 0 ;
 ;
 ; DBEval(;
 {|| M->__Avg := M->__Avg + 1, ;
 <v1> := <v1> + <x1> [, <vn> := <vn> + <xn>] }, ;
 <{for}>, <{while}>, <next>, <rec>, <.rest.> ;
) ;
 ;
 ; <v1> := <v1> / M->__Avg [; <vn> := <vn> / M->__Avg]

// NOTE: CLOSE <alias> must precede the others
#command CLOSE <alias> => <alias>->(dbCloseArea())

#command CLOSE => dbCloseArea()
#command CLOSE DATABASES => dbCloseAll()
#command CLOSE INDEXES => dbClearIndex()

** EOF

Look at X Sharp!

Copyright 2019, Eric Selje Page 32 of 32

Bibliography

i https://www.dbase.com/Knowledgebase/dbulletin/bu03_b.htm
ii https://www.youtube.com/watch?v=rS00xWnqwvI
iii http://www.pinter.com/ShowArticle.aspx?ArtNum=400
iv https://www.xsharp.info/forum/public-vfp/1446-foxpro-syntax-properties-and-fields#10647
v https://www.xsharp.info/forum/public-vfp/1446-foxpro-syntax-properties-and-fields#10638
vi https://www.xsharp.info/articles/blog/have-we-lost-our-mind

https://www.youtube.com/watch?v=rS00xWnqwvI

	Preface
	A Brief History of xBase
	Interpreters
	Compilers

	First Look at XSharp
	The Development Environment(s)
	XIDE
	Visual Studio

	The Language
	You have access to the entire .NET ecosystem
	Everything is an object
	Everything is strongly typed
	Namespaces
	Overloading and Getters/Setters
	Working Application and Class Libraries Together
	New Language Features
	Enhanced Strings
	Interpolated Strings
	LINQ
	Codeblocks
	Anonymous Functions (Lambdas)

	Working with Data
	What’s Missing?

	Compiling
	Conclusion
	Appendix A: X# Data Types
	xBase Specific Types

	Appendix B: The dbcmd.xh file
	Bibliography

